Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 8(56): 95377-95391, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29221134

RESUMO

Ovarian cancer is a complex disease marked by tumor heterogeneity, which contributes to difficulties in diagnosis and treatment. New molecular targets and better molecular profiles defining subsets of patients are needed. tRNA fragments (tRFs) offer a recently identified group of noncoding RNAs that are often as abundant as microRNAs in cancer cells. Initially their presence in deep sequencing data sets was attributed to the breakdown of mature tRNAs, however, it is now clear that they are actively generated and function in multiple regulatory events. One such tRF, a 5' fragment of tRNA-Glu-CTC (tRF5-Glu), is processed from the mature tRNA-Glu and is shown in this study to be expressed in ovarian cancer cells. We confirmed that tRF5-Glu binds directly to a site in the 3'UTR of the Breast Cancer Anti-Estrogen Resistance 3 (BCAR3) mRNA thereby down regulating its expression. BCAR3 has not previously been studied in ovarian cancer cells and our studies demonstrate that inhibiting BCAR3 expression suppresses ovarian cancer cell proliferation. Furthermore, mimics of tRF5-Glu were found to inhibit proliferation of ovarian cancer cells. In summary, BCAR3 and tRF5-Glu contribute to the complex tumor heterogeneity of ovarian cancer cells and may provide new targets for therapeutic intervention.

2.
Biomark Insights ; 11(Suppl 1): 1-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26843810

RESUMO

High-throughput sequencing studies of small RNAs reveal a complex milieu of noncoding RNAs in biological samples. Early data analysis was often limited to microRNAs due to their regulatory nature and potential as biomarkers; however, many more classes of noncoding RNAs are now being recognized. A class of fragments initially excluded from analysis were those derived from transfer RNAs (tRNAs) because they were thought to be degradation products. More recently, critical cellular function has been attributed to tRNA fragments (tRFs), and their conservation across all domains of life has propelled them into an emerging area of scientific study. The biogenesis of tRFs is currently being elucidated, and initial studies show that a diverse array of tRFs are generated from all parts of a tRNA molecule. The goal of this review was to present what is currently known about tRFs and their potential as biomarkers for the earlier detection of disease.

3.
mBio ; 6(1): e01670-14, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25691585

RESUMO

UNLABELLED: Many viruses express noncoding RNAs (ncRNAs). The gammaherpesviruses (γHVs), including Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, and murine γHV68, each contain multiple ncRNA genes, including microRNAs (miRNAs). While these ncRNAs can regulate multiple host and viral processes in vitro, the genetic contribution of these RNAs to infection and pathogenesis remains largely unknown. To study the functional contribution of these RNAs to γHV infection, we have used γHV68, a small-animal model of γHV pathogenesis. γHV68 encodes eight small hybrid ncRNAs that contain both tRNA-like elements and functional miRNAs. These genes are transcribed by RNA polymerase III and are referred to as the γHV68 TMERs (tRNA-miRNA-encoded RNAs). To determine the total concerted genetic contribution of these ncRNAs to γHV acute infection and pathogenesis, we generated and characterized a recombinant γHV68 strain devoid of all eight TMERs. TMER-deficient γHV68 has wild-type levels of lytic replication in vitro and normal establishment of latency in B cells early following acute infection in vivo. In contrast, during acute infection of immunodeficient mice, TMER-deficient γHV68 has reduced virulence in a model of viral pneumonia, despite having an enhanced frequency of virus-infected cells. Strikingly, expression of a single viral tRNA-like molecule, in the absence of all other virus-encoded TMERs and miRNAs, reverses both attenuation in virulence and enhanced frequency of infected cells. These data show that γHV ncRNAs play critical roles in acute infection and virulence in immunocompromised hosts and identify these RNAs as a new potential target to modulate γHV-induced infection and pathogenesis. IMPORTANCE: The gammaherpesviruses (γHVs) are a subfamily of viruses associated with chronic inflammatory diseases and cancer, particularly in immunocompromised individuals. These viruses uniformly encode multiple types of noncoding RNAs (ncRNAs) that are not translated into proteins. It remains unclear how virus-expressed ncRNAs influence the course and outcome of infection in vivo. Here, we generated a mouse γHV that lacks the expression of multiple ncRNAs. Notably, this mutant virus is critically impaired in the ability to cause disease in immunocompromised hosts yet shows a paradoxical increase in infected cells early during infection in these hosts. While the original mouse virus encodes multiple ncRNAs, the expression of a single domain of one ncRNA can partially reverse the defects of the mutant virus. These studies demonstrate that γHV ncRNAs can directly contribute to virus-induced disease in vivo and that these RNAs may be multifunctional, allowing the opportunity to specifically interfere with different functional domains of these RNAs.


Assuntos
Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , RNA não Traduzido/metabolismo , Rhadinovirus/genética , Rhadinovirus/patogenicidade , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Fibroblastos/fisiologia , Fibroblastos/virologia , Deleção de Genes , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA não Traduzido/genética , Virulência , Fatores de Virulência/genética
4.
Gene ; 544(1): 8-18, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24747015

RESUMO

Canonical RNA polymerase III (pol III) type 2 promoters contain a single A and B box and are well documented for their role in tRNA and SINE transcription in eukaryotic cells. The genome of Murid herpesvirus 4 (MuHV-4) contains eight polycistronic tRNA-microRNA encoded RNA (TMER) genes that are transcribed from a RNA pol III type 2-like promoter containing triplicated A box elements. Here, we demonstrate that the triplicated A box sequences are required in their entirety to produce functional MuHV-4 miRNAs. We also identify that these RNA pol III type 2-like promoters are conserved in eukaryotic genomes. Human and mouse predicted tRNA genes containing these promoters also show enrichment of alternative RNA pol III transcription termination sequences and are predicted to give rise to longer tRNA primary transcripts.


Assuntos
Regiões Promotoras Genéticas/genética , RNA Polimerase III/genética , RNA Viral/genética , Rhadinovirus/genética , Transcrição Gênica , Células 3T3 , Animais , Sequência de Bases , Northern Blotting , Fibroblastos/metabolismo , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Genoma Viral/genética , Interações Hospedeiro-Patógeno , Humanos , Camundongos , MicroRNAs/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Poliproteínas/genética , Dobramento de RNA , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , RNA Viral/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Nucleic Acids Res ; 39(13): 5499-512, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21421562

RESUMO

Human RNA polymerase (Pol) III-transcribed genes are thought to share a simple termination signal constituted by four or more consecutive thymidine residues in the coding DNA strand, just downstream of the RNA 3'-end sequence. We found that a large set of human tRNA genes (tDNAs) do not display any T(≥4) stretch within 50 bp of 3'-flanking region. In vitro analysis of tDNAs with a distanced T(≥4) revealed the existence of non-canonical terminators resembling degenerate T(≥5) elements, which ensure significant termination but at the same time allow for the production of Pol III read-through pre-tRNAs with unusually long 3' trailers. A panel of such non-canonical signals was found to direct transcription termination of unusual Pol III-synthesized viral pre-miRNA transcripts in gammaherpesvirus 68-infected cells. Genome-wide location analysis revealed that human Pol III tends to trespass into the 3'-flanking regions of tDNAs, as expected from extensive terminator read-through. The widespread occurrence of partial termination suggests that the Pol III primary transcriptome in mammals is unexpectedly enriched in 3'-trailer sequences with the potential to contribute novel functional ncRNAs.


Assuntos
RNA Polimerase III/metabolismo , Regiões Terminadoras Genéticas , Transcrição Gênica , Região 3'-Flanqueadora , Animais , Linhagem Celular , Células HeLa , Humanos , Camundongos , RNA de Transferência/genética , Análise de Sequência de DNA
6.
RNA ; 16(1): 170-85, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19948768

RESUMO

Murid herpesvirus 4 (MuHV-4) microRNAs were previously cloned from latently infected tumor cells and predicted to be processed from a series of RNA polymerase III primary transcripts. We detected maturely processed MuHV-4 miRNAs within total RNA from lytically infected cells in vitro and infected tissues ex vivo, using a highly sensitive reverse ligation meditated RT-PCR strategy. We determined that the MuHV-4 microRNAs are biologically active during infection by a luciferase reporter system. We experimentally demonstrated that transcription of the MuHV-4 microRNAs is by RNA polymerase III by alpha-amanitin insensitivity and by specific deletion of the RNA polymerase III type 2-like promoter elements of MuHV-4, resulting in the complete loss of miRNA detection and function. Finally, we demonstrate that these 10 viral miRNAs, each transcribed from highly conserved and novel polymerase III promoter elements, vary markedly in their relative abundance and activity.


Assuntos
MicroRNAs/genética , RNA Polimerase III/fisiologia , RNA Viral/genética , Rhadinovirus/genética , Transcrição Gênica , Células 3T3 , Animais , Sequência de Bases , Células Cultivadas , Deleção de Genes , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Humanos , Camundongos , MicroRNAs/química , MicroRNAs/metabolismo , MicroRNAs/fisiologia , Modelos Biológicos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/fisiologia , RNA Polimerase III/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , RNA Viral/química , RNA Viral/fisiologia , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica/fisiologia
7.
Virology ; 335(1): 72-86, 2005 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-15823607

RESUMO

To determine if the cellular factors La autoantigen (La) and polypyrimidine tract-binding protein (PTB) are required for hepatitis C virus (HCV) replication, we used siRNAs to silence these factors and then monitored their effect on HCV replication using quantitative RT-PCR. In addition, we determined the influence of PTB on the activity of the 3' noncoding region (NCR) of HCV and investigated its interaction with the components of the HCV replicase complex. We found that La is essential for efficient HCV replication while PTB appears to partially repress replication. PTB does, however, block the binding of HCV RNA-dependent RNA polymerase (RdRp, NS5B) to the 3'NCR. Indirect immunofluorescence microscopy showed co-localization of cytoplasmic PTB with the HCV RdRp in hepatoma cells (Huh-7) expressing HCV proteins, while in vitro translation of viral proteins from the HCV replicon revealed the interaction of PTB isoforms with NS5B polymerase and NS3.


Assuntos
Hepacivirus/fisiologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Ribonucleoproteínas/metabolismo , Replicação Viral , Regiões 3' não Traduzidas/metabolismo , Autoantígenos , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Dados de Sequência Molecular , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Biossíntese de Proteínas , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleoproteínas/genética , Proteínas não Estruturais Virais/metabolismo , Antígeno SS-B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...